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Abstract-An exact formulation of the governing dual integral equations for the torsion of a
non-homogeneous stratum due to a rigid circular body at its free surface is presented. The stratum varies in
shear modulus according to the hyperbolic variation in a contemporary work[l]. It is shown that the unknown
static stress distribution under the rigid body is governed by modified Bessel function of the first kind. By
comparing the governing functions in the dual integral equations for live cases of elastic media: homogeneous
half-space, and stratum, linearly non-homogeneous half-space and stratum and, finally, the present
non-homogeneous stratum with hyperbolic variation, it is established that the surface shear modulus is the
dominant parameter in the assessment of the stress and displacement fields in a non-homogeneous stratum
where lateral variation of elastic properties is negligible.

l. INTRODUCTION

In a contemporary work [1], the author has considered the problem of static stress distribution
under a rigid rectangular body resting on the free surface of an infinitely wide elastic stratum in
which the shear modulus increases only in the depth direction, z, according to the hyperbolic
variation:

G(z) = h
Goh

.-z (1)

The major conclusion of that work is to establish the dominance of surface modulus as a good
first approximation to the solution of the unknown stress distribution under the body. The result,
however, contains two fundamental unknown elastic properties: modulus of elasticity and
Poisson's ratio. As it is well-known, the torsional case provides a useful avenue for separating the
two unknowns since it is independent of Poisson's ratio. Therefore, if the conclusion of the
work [1] is still valid for the torsional case as, indeed, it has been suggested in a previous work [2],
then we can use the result of torsional case to evaluate shear modulus from which Poisson's ratio
can be determined using results of the translational cases.

The present investigation is, therefore, concerned with the problem of the torsion of a
non-homogeneous stratum with a shear modulus variation given by equation (1) due to the
application of a static torque to a rigid circular body resting on its free surface. The stratum
clearly merges into a rigid bed at depth h.

It is shown that the governing function in the dual integral equations is very close to
corresponding functions for three other cases: a homogeneous elastic stratum of depth h, a
linearly non-homogeneous stratum of depth h in which the shear modulus at the base is twice the
surface shear modulus and, finally, a linearly non-homogeneous half-space with the same rate of
increase of modulus as in the stratum. The last two cases have been chosen because their rate of
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increase of modulus is the same (Go/h) as the rate at the surface of the hyperbolic variation in
equation (1). The dominance of surface shear modulus is then investigated by comparing all the
four cases with the governing function of a homogeneous half-space whose modulus is the same
as the surface modulus of the non-homogeneous media.

2 GOVERNING DIFFERENTIAL EQUATIONS

We consider the stratum as having an arbitrary variation G(z) which will be specified later.
The elastic equations in cylindrical polar coordinates, for a stratum at rest, are

(2)

where the components of rotation and of shear strain are related to the only non-vanishing
component of displacement v in the 6-direction by

av2w =--
r az

1 a
2wz = -- (vr)

r ar

av
'Y8z = az .

Substituting these in equation (2), we can show that

a
2
v a [1 a ] 1av-+- --(vr) +--=0

az 2 ar r ar y az

where we have introduced

G(z)
y(z) = G'(z)'

(3)

(4)

(5)

Assuming now the hyperbolic variation of equation (1) for G(z), we find from equation (5) that

y(z)=h-z.

Using now y(z) as a subsidiary independent variable and noting that

av av
az ay

we transform equation (4) into

a2 V a [I a ] I av-+- --(vr) ---=0.
ay2 ar r ar y ay

(6)

(7)

(8)
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Introducing now the dependent variable v(p, y) of Hankel transform of order unity defined by

v(p, y) = L~ v(r, y )rJ1(pr) dr

we reduce equation (8) to
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(9)

which is the governing differential equation in terms of the displacement transform.

3. GENERAL SOLUTION OF THE GOVERNING EQUATION AND
EXPRESSION FOR STRESS TRANSFORM

Introducing the subsidiary variables V and Y defined through

v(p, y) = e-PYV(Y)}
Y=2py

we can show that equation (10) reduces to Kummer's equation

(10)

(11)

(12)

However, the solutions of equation (12) in terms of the confluent hypergeometric functions of the
first and second kinds <I> (a, c ; x) and 'I' (a, c ; x) present a little difficulty because the parameter c
becomes a negative integer:

c = -1.

Using the notation of Erdelyi et al. [3], the appropriate solution of the <I>-function is

Y2 = xl-C<l>(a - c +1,2- c; x)

in which, for our present case

c = -1
1a =--
2

x = 2py.

Similarly for the 'I'-function, we require the transformation in ([3], p. 257, equation 6)

'I'(a, c; x) = X l-c'l'(a - c + 1,2 - c; x).

We find, using the above, that the general solution of equation (12) is

V = y 2[A'I'(1!, 3; Y) +B<I>(1!, 3; Y)]

(13)

(14)

(15)

(16)

(17)
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which gives
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(18)

It is easy to recognise now that the qr and <P functions which occur in equation (18) are related
to modified Bessel function of the first and second kinds by virtue of the known relations ([3], p.
265, equations 10 and 12).

I"(x) = f(v1+ 1) (hr e-
x

<PW + 1'),0 + 21'); 2x I]
Kv(x) = 'IT '12 e- X (2xrqr[(4+ 1'),(1 + 2v);2x]

so that, on setting

1'=1

we find

v(p, y) == 2PY[AK1£) +4BI,(py)l
For the transform of the shear stress given by

- G() dv
Tze= Z dz

(9)

(20)

(21)

(22)

we require the differential properties of the function Ib) and K,(x) which are known from the
recurrence relations:

(23)

Using these results in equations (21) and (22) leads to:

(24)

4. EXPRESSIONS FOR THE ARBITRARY FUNCTIONS FROM
BOUNDARY STRESSES AND DISPLACEMENTS

The unknown shear stress distribution under the rigid circular body and the known zero shear
stress outside it will be represented by the discontinuous stress T(r) which is valid throughout the
free surface. At the base of the stratum, the particles can only be regarded as fixed so that the
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displacement component v vanishes. Thus, the two equations for evaluating A and Bare
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TzeLo = T(r) (r;;. 0)

iJ!z-h = 0 (r;;. 0).

(25)

(26)

Noting that z =0 at the surface corresponds to y = hand z = h at the base corresponds to y =0,
we can express equations (25) and (26) after using the general expressions for Tze and iJ in
equations (24) and (21) respectively as:

lim {.~ [yK 1(py)] +4B [y11(py)] } = o.
y....o V 7T

(27)

(28)

The behaviour of modified Bessel functions for small values of the argument are known, for
example, ([3], p. 5, equation 12 and p. 9, equation 37):

~

1v(z) = L (~z)2m+v ![m !rem + JI + 1)]
m=O

where, in equation (30), I/J is the logarithmic derivative of the gamma function.
These results lead to

limKl(z)~.!+O(z)
z....o Z

where, in equation (32), we have used the elementary result

lim z log (z) = O.
z....o

We can now see from equation (28) that

A =0

so that, from equation (27),

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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Thus, throughout the stratum

and
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v(p, y) =8pyBl1(py)

1'(r)yl1(py)

Gophlo(ph)

Tz.(p, y) =- 8p 2GohBlo(py)

-Io(py)
= 1'(r) Io(ph) .

(36)

(37)

As a simple check, we find on setting y = h (or z = 0) at the surface:

1'z.=1'(r)

and at the base where y = 0 (or z = h)

v=O

(38)

(39)

where we have made use of equation (31) in equation (36).

We notice that both equations (38) and (39) agree with the boundary conditions in equations
(25) and (26).

5. GOVERNING DUAL INTEGRAL EQUATIONS AND
COMP ARISON WITH OTHER ELASTIC MEDIA

The exact mixed boundary conditions at the free surface are:

v (r, 0) = rOo (0 "'" r < R)}
1'z.(r, 0) = 0 (r > R)

(40)

where 00 is the constant angle of twist due to the applied static torque on the circular body.
From equation (36), we find, by setting z = 0 (y = h) at the surface that

-( h) = r(r)I1(ph)
v p, - Goplo(Ph) (41)

Using the Hankel inversion theorem on equation (41) to recover v(r,O) and, similarly on

1'z.(p, h) to recover 1'(r), we find that the governing dual integral equations are

100 Il(ph)- )
o Io(ph) ~(r)Jl(pr)dp = - GorOo. (0"", r < R).

L1'(r)pJ1(pr) dp = 0 (r > R)

(42)



The torsion of a non-homogeneous stratum 473

We readily recover the result for a homogeneous half-space as h tends to infinity when use
has been made of the known asymptotic results, ([4], p. 202 equations 1 and 2).

(43)

leading to

( T(r) J,(pr) dp = - Gorllo(O ~ r < R)Jo
(44)

(45)

We now compare the governing dual integral equations for five cases in order to assess the
extent of the dominance of surface shear modulus in the unknown stress distribution under the
rigid body. The cases are for the following elastic media:

(I) Homogeneous half-space.
(2) Homogeneous stratum of depth, h.
(3) Linearly non-homogeneous half-space.
(4) Linearly non-homogeneous stratum of depth h and with shear modulus at the base being

twice at the surface.
(5) Non-homogeneous stratum with hyperbolic variation having a surface rate (Go/h) as the

constant rate of shear modulus increase in cases (3) and (4).

If we write the governing dual integral equations in these five cases as

1: ,,(Ph) *J J,(P:) dp = - a.rilo(O ~,< R) )

fa T(r)pJ,(pr) dp = 0 (r > R)

we find respectively from the following works that

(,(ph) = 1 ([5], p. 38, equations (28))

(2(ph) = tanh (ph) ([6], p. 372, equations (lOa))

Y (ph) = Ko(ph) ([2], p. 241, equations (38))
~3 K,(ph)

Io(2ph )Ko(ph) - Io(ph )Ko(2ph) .
(.(ph) = Io(2ph)K ,(ph) _ I,(ph )Ko(2ph) ([2], p. 241, equatIOn (35))

I,(ph)
(,(ph) = Io(ph r (equations (42) of present work).

These results have been compared in Fig. I, throughout the range of the integrating parameter
by introducing the auxiliary variable:
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1'J = ph (46)
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Tables of functions in (4) and (7) have been used for the Bessel functions in the range 0 < 1) ",: 10
and the asymptotic expansions in the range 1) > 10.

6. DISCUSSION AND CONCLUSIONS

It is convenient to split our discussion of the results based on Fig. I into two main aspects: the
effect of the shear modulus as a dominant parameter and the relative effect of the other two
factors-stratum depth and rate of non-homogeneity.

~,

5
o L-.~~~~._~~~~_

o 10 15

Fig. I. Comparison of the governing functions for the five cases of elastic media.

Figure 1 shows that all the governing functions approach the value, unity, of the homogeneous
half-space for large values of 1), the difference in the range 1) > 10 is less than 5 per cent in all the
cases. As expected, the stiffest medium given by ~5 is smallest in magnitude so that the
corresponding unknown stress distribution will be the largest thus providing the greatest resisting
torque when integrated over the circular area. The four functions ~2 to ~5 being all tied together
both at the origin and at infinity show the secondary nature of the effect of stratum depth and
non-homogeneity when compared with ~, the homogeneous half-space.

In order to appreciate fully the dominance of the surface shear modulus, we remark here that
Fig. I only demonstrates that the surface modulus effect is only a good first approximation.
Indeed, to show that we can estimate the surface modulus of any non-homogeneous soil in which
lateral variation is negligible from the theory of the homogeneous half-space, we observe that the
whole integrand

Ii "'" ~i(ph) T(r) J,(pr), i = 1,2, ... 5. (47)

in equation (45) starts from the origin when use has been made of the power series of the Bessel

functions and we record that the expression for T(r) in the case of the homogeneous half-space is
given by:

(48)

([5], p. 38, equation 28b).
Thus, the variation of the integrand over the whole range of the integrating parameter p is
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such that all the curves are tied together at the origin and infinity not excluding the homogeneous
half-space unlike in Fig. 1.

We have shown in the previous work [2] that when the body on a non-homogeneous stratum is
now subjected to harmonic oscillations even the secondary effect due to non-homogeneity and
stratum depth is counteracted by the opposing effect due to the apparent increase in inertia of the
body.

Our main conclusion, therefore, is that we can still estimate to a good degree of accuracy the
surface shear modulus of a non-homogeneous soil from the simple expression:

(49)

of equation (61) in [2] where n is the resonant frequency, p is the soil density and j is the
non-dimensional polar inertia of the body.
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